Wawrzynek, Weaver

Fall 2021 C5 61C Midterm

Solutions last updated: Saturday, October 23, 2021

PRINT your name:
(first) (last)

PRINT your student ID:

Read the following honor code and sign your name.

I understand that I may not collaborate with anyone else on this exam, or cheat in any way. I am aware
of the Berkeley Campus Code of Student Conduct and acknowledge that academic misconduct will be
reported to the Center for Student Conduct and may further result in, at minimum, negative points on
the exam and a corresponding notch on Nick’s Stanley Fubar demolition tool.

SI1GN your name:

You have 110 minutes. There are 6 questions of varying credit (100 points total).
For questions with circular bubbles, you may select only one choice.
(O Unselected option (completely unfilled)
@ Only one selected option (completely filled)
For questions with square checkboxes, you may select one or more choices.
B You can select
M multiple squares (completely filled).
Anything you write that you eress-eut will not be graded.

If an answer requires hex input, make sure you only use capitalized letters! For example, 0OxXDEADBEEF
instead of 0xdeadbeef. Please include hex (0x) or binary (0b) prefixes in your answers. For all other bases,
do not add the suffix or prefixes.
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Q1 Potpourri (10 points)

Q1.1 (1.25 points) True or False: The compiler resolves define statements.

@ True QO False

Solution: True. In particular, the pre-processor, which is part of the compiler, examines the
C code and replaces all instances of the defined variable with its value. This must be done on
C code, so it happens in the compilation stage (later stages no longer use C code).

Grading: 1.25 points for True.

Q1.2 (1.25 points) True or False: The assembler is the step with the highest computational complexity
among CALL.

O True @ ralse

Solution: False. The compiler is more complex than the assembler.

Grading: 1.25 points for False.

Q1.3 (1.25 points) True or False: The assembler produces an executable.

O True @ ralse

Solution: False. The assembler creates an object file. The linker creates an executable.

Grading: 1.25 points for False.

Q1.4 (1.25 points) True or False: In the loader, the program is placed in memory in preparation of running
the code.

@ True QO False

Solution: True. Executable files (the program instructions after passing through the compiler,
assembler, and linker) are stored on the disk, and the loader will place the executable in memory
before running it.

Grading: 1.25 points for True.
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Q1.5 (1.25 points) Convert 0xDA71 to a 16-bit binary value, including the prefix.

Solution: 0b1101 1010 0111 0001

Remember that one hexadecimal digit (16 possible values) can be represented by four binary
digits (4 digits, 2 possible values each, 2* = 16). Converting each hexadecimal digit to its binary
representation, we get 0xD = 0b1101, 0xA = 0b1010, 0xA = 0b0111, and 0x1 = 0b00O1.

Note that the prefix is Ob to denote binary values.

Other versions of this exam gave different hexadecimal values, but the conversion process is

the same:
« 0x326A = 0b0011 0010 0110 1010
. 0xB13C = 0b1011 0001 0011 1100

« 0x126D = 0b0001 0010 0110 1101

Grading: 1.25 points for the correct binary string. No partial credit, sorry.

Q1.6 (1.25 points) Convert 0x85 to decimal, assuming the data was stored as an unsigned one-byte
integer.

Solution: 133

This question asks you to convert the provided one-byte (8 bits = 4 nibbles = 2 hexadecimal
digits) hexadecimal number to a decimal number.

Hexadecimal is base-16, so this hexadecimal number has a 5 in the ones place and an 8 in the
16s place. In decimal, this is (8 x 16) + (1 x 5) = 133.

Other versions of this exam gave different hexadecimal values, but the conversion process is

the same:
- 0x86 = 134
« 0x87 = 135
« 0x88 = 136

Grading: 1.25 points for the correct decimal number. No partial credit, sorry.
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Q1.7 (1.25 points) Convert 0x85 to decimal, assuming the data was stored as a 2’s complement one-byte
integer.

Solution: -123

This question asks you to convert a hexadecimal number to a two’s complement integer. To
do this, we start by writing out the hexadecimal number in binary (using the same process as
Q1.5): 0x85 = 0b1000 0101.

Recall that in 2’s complement, the most-significant bit tells us whether the number is positive
or negative. Here, the most-significant bit is 1, so the number must be negative.

If the number is negative, we need to invert all the bits and add 1 to determine the value of the
number. Inverting all the bits gives us 0b0111 1010, and adding 1 gives us 0b0111 1011.

Now we can convert this binary number into a decimal number: 20421 +23 424425126 — 123,
Remember that we determined the number is negative, so our final answer is -123.

Other versions of this exam gave different hexadecimal values, but the conversion process is

the same:
. 0x86 = -122
. 0x87 = -121
. 0x88 = -120

Grading: 1.25 points for the correct decimal number. Half credit (0.675 points) only for the
correct decimal number but the opposite sign (e.g. 123 instead of -123).
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Q1.8 (1.25 points) Convert 0x85 to decimal, assuming the data was stored as a sign-magnitude one-byte
integer.

Solution: -5

This question asks you to convert a hexadecimal number to a sign-magnitude integer. To do
this, we start with the binary version of the number (which we wrote out in the previous part):
0x85 = 0b1000 0101.

Recall that in sign-magnitude, the most-significant bit tells us whether the number is positive
or negative. Here, the most-significant bit is 1, so the number must be negative.

In sign-magnitude, all the other bits of the number (except the most-significant bit) tell us the
value of the number. Here, those bits are 0b000 0101.

Now we can convert this binary number into a decimal number: 2° + 22 = 5. Remember that
we determined the number is negative, so our final answer is -5.

Other versions of this exam gave different hexadecimal values, but the conversion process is

the same:
« 0x86 = -6
« 0x87 = -7
. 0x88 = -8

Grading: 1.25 points for the correct decimal number. No partial credit, sorry.
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Q2 Now, Where Did I Put Those Strings? (10 points)
Consider the following code:

char *foo() {
char *strl = "Hello World";
char str2[] = "Hello World";
char *str3 = malloc(sizeof(char) * X);
strcpy(str3, "Hello World");
// INSERT CODE FROM PARTS 5-7

}

The char *strcpy(char *dest, char *src) copies the string pointed to by src, including the
terminating null byte ('\0"), to the buffer pointed to by dest. The strings may not overlap, and the
destination string dest must be large enough to receive the copy.

Q2.1 (1 point) Where is *str1 located in memory?

QO code @ static QO heap QO stack

Solution: Static
This question is asking about the location of *str1, the address stored in strl.

The code assigns the strl pointer to a hard-coded string "Hello World". C will put this
hard-coded string in static memory.

Grading: 1 point for selecting static.

Q2.2 (1 point) Where is *str2 located in memory?

Q code QO static QO heap @ stack

Solution: Stack
This question is asking about the location of *str2, the address stored in str2.

str2 is a character array, and it is declared inside the foo function, so it is a local variable.
Local variables are stored in stack memory.

Grading;: 1 point for selecting stack.
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Q2.3 (1 point) Where is *str3 located in memory?

QO code QO static @ heap QO stack

Solution: Heap
This question is asking about the location of *str3, the address stored in str3.

The code assigns the str3 pointer to the result of calling malloc. Recall that malloc returns
a pointer to memory on the heap, so *str3 is on the heap.

Grading: 1 point for selecting heap.

Q2.4 (1 point) What is the minimum value of X needed for the code to have well-defined behavior?

Solution: 12

This question is asking how much space needs to be allocated on the heap in order to fit the
string being copied into the heap memory.

strcpy will copy the string "Hello World", including the null terminator byte, into the
memory created by the malloc call. The string is 11 bytes (don’t forget to include the space),
and the null terminator is 1 byte, so in total, we need 12 bytes of memory to fully store this
string.

Grading: 1 point for the correct answer (12). No partial credit, sorry.

Which of the following lines can be inserted into the function at the given line, with well-defined
behavior? Select all that apply.
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Q2.5 (1 point) Returning the string.
B return stri; B return str3;

Oreturn str2; O None of the above

Solution: return str3;

strl is a pointer to static memory, which doesn’t change throughout program execution, so
return strl; is safe.

str2 is a pointer to the stack. When the function returns, the string on the stack is erased,
which causes return str2; to have undefined behavior.

str3 is a pointer to the heap. Heap memory stays allocated until the programmer calls free.
Since this function never calls free, the string on the heap will stay allocated, so return
str3; is safe.

Grading: Each answer choice was graded independently. 1/3 of a point for correctly selecting
strl, 1/3 of a point for correctly not selecting str2, and 1/3 of a point for correctly selecting
str3. Selecting "None of the above" is worth 1/3 points (for correctly not selecting str2).

Q2.6 (1 point) Modifying the string.

Ostrl[0] "I Mstr3[0] = '1';

BMstr2[0]

1
()

O None of the above

Solution: str2[0] = 'J'; and str3[0] = 'J';

strl is a pointer to static memory, which is read-only. Trying to modify static memory will
result in an error.

str2 is a pointer to the stack. Modifying stack memory is legal, so str2[0] = 'J'; is safe.
str3 is a pointer to the heap. Modifying heap memory is legal, so str3[0] = 'J'"; is safe.

Grading: Fach answer choice was graded independently, just like in the previous subpart.
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Q2.7 (1 point) Freeing the string.
O free(strl); B free(str3);

O free(str2); O None of the above

Solution: free(str3);

Recall that free is used to free any allocated memory. This means that free can only be called
on a pointer to the heap.

strl is a pointer to static memory. Calling free on a pointer to static memory will result in
an error.

str2 is a pointer to stack memory. Calling free on a pointer to stack memory will result in
an error.

str3 is a pointer to heap memory. Calling free on a pointer to heap memory is legal, so
free(str3); is safe.

Grading: Each answer choice was graded independently, just like in the previous subparts.

Q2.8 (1 point) Printing the string.
Mprintf("%s\n", stril); M printf("%s\n", str3);

B printf("%s\n", str2); [ None of the above

Solution: printf("%s\n", strl); and printf("%s\n", str2); and printf("%s\n",
str3);

Recall that printf("%s\n", strl); dereferences the strl pointer and prints out the string
stored at that address (up until the null terminator).

Since strl, str2, and str3 all point to a valid null-terminated string, it is safe to call printf
on all three of them.

Grading: Fach answer choice was graded independently, just like in the previous subparts.
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Q2.9 (2 points) If this code was run on a little-endian system, what would ((uint32_t*) strl)[2]
evaluate to? Express your answer in hexadecimal, with the necessary prefix. Note that uint32_t
refers to an unsigned 32-bit integer.

Solution: 0x00646C72

This question requires you to think about endianness and how memory would be interpreted
if casted to a different type.

First, note that strl contains the address of the bytes Hello World. These bytes are stored
contiguously in memory; H is at the lowest address, and d is at the highest address. A null byte
is stored immediately after d in memory.

Casting strl to (uint32_t*) doesn’t change the fact that str1l is still a pointer to the bytes
Hello World, but those bytes are now being read as an array of uint32_t (32-bit = 4-byte
unsigned integers), instead of an array of chars.

The [2] syntax says to dereference the pointer and look for the second element (zero-indexed)
in the array. Each element in the array is 4 bytes long because of the cast. Thus the 0th element
is bytes 0-4 (Hell), the 1st element is bytes 5-8 (0 Wo), and the 2nd element is bytes 9-12 (r1d
and the null byte).

Finally, we need to interpret these four bytes (r1d and the null byte) as a uint32_t. We can
use the ASCII table to look up the bytes being stored in memory to represent these characters.
From lowest to highest memory address, the bytes are 0x72 (r), 0x6C (1), 0x64 (d), and 0x00
(null byte).

Because the system is little-endian, the most-significant byte is stored at the highest memory
address. In other words, we should read the integer starting from the highest address and
ending at the lowest address. This gives us 0x00646C72.

Grading: 2 points for the correct hexadecimal value. 1 point for starting from the second
character, not the second word: 0x206F6C6C. 1 point for wrong endianness: 0x0x726C6400
or 0x20576F72. For any answer (fully correct or partial), 1 point was deducted if only one
byte of data was given instead of the full 4 bytes.
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Q3 1CaScheme (20 points)
Consider the following C code:

union ExtraStuff { typedef struct ConsCell {
char a[5]; void *car;
uintlo_t b; void *cdr;
int c; union ExtraStuff extra;
double d; } cons;

};

Consider the following function: cons *map(cons *c, (void *)(*f) (void *));
map takes a pointer to a cons struct ¢ and a function pointer f.
If the cons struct pointer is NULL, map returns NULL. Otherwise, it does the following:
1. Allocate a new cons struct. ret is a pointer to this new struct.
2. Set the contents of the extra union in ret to be all zeros.
3. Set the car field in ret to the result of calling f on the car pointer in c.

4. Set cdr field in ret to the result of calling map recursively on the cdr pointer in c.

Q3.1 (18 points) Complete the following code by filling in the blanks. This code should compile without
errors or warnings. Each blank is worth 2 points.

cons *map(cons *c, (void *) (*f) (void *)) {

cons *ret;
if ( ) return ;
ret = malloc( );

extra = 0;

car 5

cdr =

return ret;
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Solution:

cons *map(cons *c, (void *) (*f) (void *)) {
cons *ret;
if ( ¢ == NULL ) return NULL;
ret = malloc(sizeof(cons));
ret->extra.d = 0;
car = f(c->car);
ret->cdr = map(c->cdr, £f);
return ret;

}

Much of this question involves reading the provided description of the function and converting it
to valid C code.

Blank 1 checks if the cons struct pointer is NULL.
Common mistakes:

« *c == NULL would be incorrect here, because we want to check if the pointer (i.e. the address
stored in the variable) is NULL. We don’t want to see if the value stored at the address in
cons is NULL.

« cons == NULL would be incorrect here, because cons is the type of the variable, not the
name of the variable itself. For the same reasons that you wouldn’t write something like int
== NULL, you can’t write cons == NULL here.

Accepted solutions:
« ¢ == NULL
e IC
Blank 2 returns NULL if c is NULL.
Accepted solutions:
« NULL
« c (if the first blank is correct, then c must be NULL if the if check passes)

Blank 3 asks you to input an argument to malloc that will allocate enough space for a new cons
struct. The simplest and best way to do this is to use sizeof(cons), which will return the number
of bytes that a single cons struct takes up in memory.

Since we did not say anything about allocating the minimum space necessary, it was okay if you
allocated more space than needed. For example, you could allocate space for two structs with 2 *
sizeof(cons). You could also calculate the size of the struct by yourself (16 bytes) and input any
number greater than or equal to 16.

Accepted solutions:
+ sizeof(cons)

« sizeof(struct ConsCell) (equivalent because of the typedef statement)
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+ Any expression that is guaranteed to evaluate to at least 16, e.g. hard-coding the number 16
o Partial credit: sizeof(struct cons) (invalid syntax)
« Partial credit: sizeof(ConsCell) (invalid syntax)

Blanks 4, 6, and 8 are immediately followed by the names of the struct fields: car, cdr, and extra.
Also, the question says that the next steps are to set each of the fields in ret. We know that ret is
a pointer to a struct from the provided line of code. To access a struct field from a pointer to the
struct, we must first dereference the struct, and then access the correct field. The simplest and best
way to do this is to use the C shorthand ret-> notation. Recall that the -> syntax will dereference
a struct pointer and then access a struct field.

Common mistakes:

« ret. is incorrect because it fails to dereference the struct pointer. If ret was a struct (not a
struct pointer), then you would be able to use this syntax.

« *ret-> and variations are incorrect because they dereference the ret pointer twice. The *
syntax dereferences the pointer once to access the struct, and then the -> syntax dereferences
the struct, which results in an error.

Accepted solutions:
. ret->

« (*ret). (note that the parentheses are required, because the dereference operator must
happen before the struct access operator)

« Partial credit: *ret. (by C’s order of operations, the struct access operator would take
precedence over the dereference operator here, which is incorrect; you must dereference the
pointer before accessing a struct field)

Blank 5 sets the contents of the extra union to be all zeros. This was probably the hardest blank
in this question! The key observation is that the largest element in the union is double d, which
is 8 bytes = 64 bits. (char a[5] is 5 bytes = 40 bits, uint16_t b is 2 bytes = 16 bits, and int cis
4 bytes = 32 bits.) Thus, if we set the largest element in the union to 0, all the other union elements
using that same memory will also be set to 0.

Accepted solutions:
. d.

« Partial credit: . double (correctly identified the double, but used the type instead of the field
name)

« Partial credit: ->d (correctly identified the double, but tried to dereference the struct to reach
the union field)

Note that the variables in the union were rearranged in some exam versions. For example, one
version had double a, which would make the correct answer to this subpart . a, not .d.

Blank 7 sets the car field to the result of calling f on the car pointer in c. Remember that c is a
struct pointer, so we have to use -> syntax to dereference the struct and access the car pointer
field inside the struct.
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Accepted solutions:
« f(c->car) or £((*c).car) (note that (*c) . car is equivalent to c->car)

« (*f)(c->car) or (*£) ((*c).car) (C lets you call a function pointer with or without the
dereference symbol, as long as you add parentheses to dereference the function pointer first)

« Partial credit: “f(c->car) or *£((*c) .car) (by C’s order of operations, the function will
be called, and the pointer returned by the function will be dereferenced, which is not what
we want; we want to assign the pointer to the ret->car pointer)

« Partial credit: £(*c.car) (same reasoning as why *ret. fails in blanks 4, 6, and 8)

Blank 9 calls map recursively on the cdr pointer in c. Note that map takes two arguments, so the
function pointer £ must be provided as the second argument. Again, remember that c is a struct
pointer, so we have to use -> syntax to dereference the struct and access the cdr pointer field
inside the struct.

Accepted solutions:
« map(c->cdr, f)

« (*map) (c->cdr, f) (same reasoning as why dereferencing the function pointer is okay in
blank 8)

Partial credit: *map(c->cdr, f) (same reasoning as blank 8)

Partial credit: map (c->cdr) (forgot to supply f argument)

« Partial credit: map (c->cdr, (void*) (*f) (void*)) (supplied the f argument with the
type in addition to the variable)

Grading: Each blank was graded independently. 2 points for any accepted solution. 1 point for
any partial credit solution listed. No credit for any of the common mistakes listed.
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Q3.3 (2 points) On a 32-bit architecture, what is sizeof(cons)?

Solution: 16
This question asks you to calculate the memory that a cons struct takes up in memory.

First, remember that C calculates sizes in terms of bytes, so sizeof will return the size of the
struct in bytes (not bits).

On a 32-bit architecture, a pointer is 32 bits = 4 bytes long. This means that the pointers void
*car and void *car each take up 4 bytes in memory, for a total of 8 bytes.

The size of a union is the size of the largest element in the union. The largest element in the
union is the double field, which is 8 bytes = 64 bits. (char a[5] is 5 bytes = 40 bits, uint16_t
b is 2 bytes = 16 bits, and int c is 4 bytes = 32 bits.)

Note that the actual union (not a pointer to the union) is stored in the struct. If the struct had
instead contained union ExtraStuff *extra, then the pointer would take up 4 bytes in
memory.

In total, the struct takes up 8 bytes for the void pointers and 8 bytes for the union, for a total
of 16 bytes.

Note that no struct or union padding is necessary here, because every field size is a multiple
of 4 bytes and thus is already word-aligned.

Grading: 2 points for the correct size (16). The answer "16 bytes" was accepted for full credit,
even though the sizeof(cons) expression in C would only return the number "16", not the
text "16 bytes".
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Q4  To Float or Not to Float (20 points)
Consider a floating point system that has 16 bits with 7 bits of exponent and an exponent bias of -63,
which otherwise follows all conventions of IEEE-754 floating point numbers (including denorms, NaNs,
etc.). In this question, we will compare this system to an unsigned 16-bit integer system.

Q4.1 (4 points) What is the value of floating point number 0xC2C0 in decimal?

Solution: —14

First, we convert the hexadecimal number to binary: 0xC20 = 0bl 1000010 11000000.
We’ve added spaces to distinguish the sign bit, the 7 exponent bits, and the remaining 8
significand bits.

The sign bit is 1, so the number is negative.

The unsigned exponent bits 1000010 are equal to 66 in decimal. Adding the exponent bias
gives us an exponent of 66-63 = 3.

The significand bits are 11000000. Adding the implicit 1 gives us 1.11000000. Since there is
a 1 in the ones digit, the 1/2s digit, and the 1/4s digit, this numberis 1 + 1/2 + 1/4 = 1.75.

Putting these together, the final number is -23 * 1.75 = —14.

Other versions of this exam gave different hexadecimal values, but the conversion process is
the same:

+ 0xC220 = -9
+ 0xC280 = —12
« 0xC260 = —11

Grading: 1 point for sign, 1.5 points each for correct exponent and significand
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Q4.2 (1 point) Which representation has more representable numbers? Count +0, -0, +00, and —o0 as
4 different representable numbers.

QO The floating point number
@ The unsigned 16-bit integer

QO Both systems can represent the same number of values

Solution: There are a total of 29 bit patterns in either system, since 16 bits store 2'6 possible
values. This means we only need to think about which bit patterns as numbers and which bit
patterns are not numbers.

In the integer system, every bit pattern represents a different number.

In the floating point system, some bit patterns represent NaNs, which are not numbers ("NaN"
stands for "Not a Number").

Since the floating point system has some bit patterns that aren’t numbers, and the integer
system has no bit patterns that aren’t numbers, the integer system can represent more numbers.

Q4.3 (3 points) How many more numbers can be represented? Write 0 if both systems can represent
the same number of values.

Solution: 510

From the previous part, we know that the only difference in representable numbers comes
from NaNs. Thus the question is asking how many NaNs exist in the floating point system.

Recall that NaNs are represented by all ones in the exponent, any value in the sign bit, and
any non-zero value in the significand (a zero in the significand would represent infinity).

The significand is 8 bits, so there are 28 — 1 possible non-zero values in the significand. There
are 2 possible bits in the sign bit. In total, there are 2 x (28 — 1) = 510 NaNss.

Thus, the unsigned integer can store 510 more unique numbers.

Grading: Half credit was awarded for forgetting the infinity (512), and forgetting negative
NaNs (255), but not both.
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Q4.4 (4 points) Out of all numbers representable by this floating point system, what is the largest
number that can also be represented as an unsigned 16-bit integer?

Solution: 216 — 27 = 65408

The unsigned number can represent any nonnegative integer less than 2!, so we’re looking
for the largest integer less than 2'0 that can be represented by the floating point number. To
do this, we can try to create a 16-bit integer with the floating point number, and how we can

maximize the number created through this process.

The significand has 8 bits plus the implicit 1 (e.g. 1.1111 1111), so to represent a 16-bit
integer, we would need an exponent of 15 to create 1 1111 1111 0000 000.

Note that the lower 7 bits of any number created in this process will always be 0, because
they are not part of the significand. Thus all we can do to maximize this number is adjust the
significand to be as large as possible. The largest significand would be all 1s, as shown above.

In other words, the value we want is Ob1.11111111 x215 which is equal to 216 _ 97 — 65408.

Grading: Half credit was awarded for 2'¢ — 1 and 2'6 — 28,

Q4.5 (4 points) What is the smallest positive number representable by this floating point system that
isn’t representable by the unsigned 16-bit integer?

Solution: 2~ 70

Floating point numbers can represent fractional numbers between 0 and 1, but integers cannot
represent fractional numbers between 0 and 1. Thus we are looking for the smallest positive
number representable by the floating point number.

The smallest positive numbers representable in floating point are the denorms. The smallest

denorm can be obtained by using a denorm exponent of 0 and the smallest possible mantissa.

This gives us 277°.

Grading: Half credit was awarded for 2771
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Q4.6 (4 points) What is the smallest positive number representable by the unsigned 16-bit integer that
isn’t representable by this floating point system?

Solution: 29 + 1

Intuitively, floating point numbers can represent all smaller integers 1, 2, 3, etc. but eventually,
there will be an integer that the floating point number skips over (the gaps between numbers
get wider as the number gets larger). Thus we are looking for the smallest positive integer
that is not representable by the floating point number.

If we make the exponent exactly equal to the number of bits in the significand, then we can
use the entire significand to represent a positive integer. The significand has 8 bits, so we can
set the exponent to 71-63=8 and use the 8 bits of the significand and the implicit 1 to represent
all integers up to 2°.

After 2%, the exponent must be increased to 72-63=9. This will add a 0 to the end of the bits of
the significand, which means that odd numbers are no longer representable after 2°. Thus the
smallest positive integer that cannot be represented by the floating point number is 27 + 1.

Grading: Half credit was awarded for 28 + 1.
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Q5 A RISC-y Program (20 points)
In addition to storing the ra register and the s registers, the stack can also store local variables. You
have access to the following labels defined externally:

» Password: a pointer to a statically-stored string "secretpass”
+ Get20chars: A function defined as follows:
— Input: a0 is a pointer to a buffer

— Effect: Reads characters from stdin, and fills the buffer pointed to by a0 with the read data,
null-terminating the string. Your code may assume that the input is at most 19 characters,
not including the null-terminator.

— Output: None
The function verifypassword is defined as follows:
« Input: No register input; however, the function receives a string input from stdin.

« Output: a0 returns 1 if the input from stdin is exactly "secretpass", and 0 otherwise.
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Q5.1 (12 points) Complete the function verifypassword. Each line contains exactly one instruction

Midterm

or pseudoinstruction.

1: verifypassword:

addi sp, sp, -24 # Make space for a 20-byte buffer

3: SW

20(sp)

5: jal ra Get20chars

6: t0 Password

7: tl

8: Loop:

9: t2

10: t3

11:

sp

0(t0)

oty

12:

13: addi tO tO

14: addi t1 t1

15:

16: Pass:

17:

18:

19: Fail:

20:

21: End:

22:

23:

24:
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Solution:

1: verifypassword:

2 addi sp, sp, -24 # Make space for a 20-byte buffer
3 sw ra 20(sp)

4: mv a0, sp

5: jal ra Get20chars
6: la t0 Password
7: mv tl sp

8: Loop:

9: 1b t2 0(t0)

10: 1b t3 0Ctl)

11: bne t2, t3, Fail
12: beq t2, x0, Pass
13: addi tO0 t0 1

14: addi tl1 t1 1

15: j Loop

16: Pass:

17: 1i a0, 1

18: j End

19: Fail:

20: 1i a0, O

21: End:

22: 1w ra, 20(sp)
23: addi sp, sp, 24
24: jr ra

that we’ve seen before in projects and labs!

epilogue).

other registers being used are t registers which do not need to be saved.
Accepted solutions:

e I'a

e x1

Line 3: First, we note that Line 2 allocated 24 bytes of space on the stack. Line 3 is storing a 4-byte
register value to the stack space that was just allocated. This looks a lot like the function prologues

A quick refresher on function prologues and epilogues: according to calling convention, there are
some callee-saved registers whose original values must be preserved after the function returns.
To achieve this, we usually store the original register values on the stack at the beginning of the
function (the prologue), and we restore the original register values at the end of the function (the

In the provided code, there is only one callee-saved register already being used: ra at line 5. All the

Thus we should save the original value of ra on the stack so that we can restore it later.

Line 4: First, we note that Line 5 is calling the Get20chars function. Before we call a function, we
need to make sure that its arguments are properly loaded into the argument (a) registers.
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According to the question, the Get20chars function takes in one argument, in the a0 register.
Thus, this line is probably going to involve putting something into the a0 register.

According to the question, the argument in a0 is a pointer to a buffer in memory, which the function
will fill up with (at most 19) input characters. In other words, the Get20chars function requires 20
bytes of space in memory to store the input characters, so a0 needs to store the address of some
20-byte space in memory where we can store a string. Where do we have 20 bytes of space in
memory right now? We allocated 24 bytes on the stack in line 2, and we used 4 of those bytes
in line 3, so we have 20 bytes on the stack that we can use! (The first sentence in this question
mentions storing local variables on the stack, and the comment on Line 2 reminds you that there is
a 20-byte buffer on the stack, to try and direct you toward this solution.)

What is the address of this space on the stack? Remember that the stack pointer sp always contains
the address of the bottom of the stack. Since the stack grows down to make space (see line 2), the
20 bytes of space is located at the bottom of the stack, and the address of this space is the address
stored in sp. Note that in Line 3, we stored the saved ra register value at the top of the 24-byte
space on the stack, so the 20-byte buffer starts at the very bottom of the stack, where sp is pointing.

Common mistakes:

« Load instructions like 1w a0 0(sp) would not work here because they would dereference
the address in sp and load a value from stack memory into a0. In this question, we want a0
to contain the address of the buffer on the stack, not a value loaded from the stack.

« Store instructions like sw a0 0(sp) would not work here because they store the value in a0
onto the stack. In this question, we want to put the argument into a0, and store instructions
would not modify the value in the register.

« la a0, sp would not work because the register sp is not in memory and does not have an
address.

Accepted solutions:

« Any instruction that puts the value of sp in a0, including: mv a0, spor addi a0, sp, 0
or add a0, x0, sp

« Partial credit: mv a0 (0)sp (incorrect syntax for mv)

« Partial credit: addi a0, sp, 4 (incorrectly assumed that the saved value of ra was below
the 20-byte buffer on the stack and used the address 4 bytes above the bottom of the stack
instead)

Line 6: Lines 6 and 7 initialize t0 and t1, which we can see will be used repeatedly in the loop.
We initialize t0 to be the address of the start of the Password string, and we initialize t1 to be the
address of the start of the user’s input string. This will let us compare each character of the strings
in a loop later.

One way to reason this out: this line is putting a value into t0. We see at line 9 that t0 will be used
as an address (because it’s in parentheses). 1a is an instruction that loads addresses into a register.

Another way to reason this out is to note that the Password label is involved in this instruction, so
we must use an instruction that uses a label. Branches and jumps don’t make sense here because

Midterm Page 24 of 35 CS 61C - Fall 2021



we aren’t implementing any loops or if/else conditions yet, so by process of elimination, we should
use 1a here.

Common mistakes:

+ Load instructions like 1w would not work here because they do not use labels. This would
lead to a syntax error.

Accepted solutions: 1a

Line 7: One way to reason this out is to note that only two registers are provided, so we probably
want a pseudoinstruction that uses only two registers. mv is the only logical pseudoinstruction to
use here.

Accepted solutions: mv

Lines 9-10: We want to use the loop to compare each character of the input string with each
character of the provided password string. In lines 6-7, we initialized t0 and t1 with the addresses
of the strings. Now we need to dereference those addresses to load each character of the string
from memory. Since each character is one byte long, 1b is the appropriate load instruction to use
here.

One way to reason this out is to note that the 0 (t0) syntax is used only in load and store instructions.
The addresses in t0 and t1 already contain data (the hardcoded password string and the input
string, respectively), so we don’t want to store to those addresses. This means we must be loading
from those addresses.

Accepted solutions:
« 1b
« 1bu

Line 11: Now that we’ve loaded a character from each string from memory, we need to check if
those characters match. If they don’t match, we can stop checking characters in a loop and jump to
the fail case.

Accepted solutions:
e bne t2, t3, Failorbne t3, t2, Fail

« Partial credit: Using the address t0 instead of the value t2, and/or using the address t1
instead of the value t3 (e.g. bne t0, tl, Fail)

Line 12: If we’ve reached the end of the string without branching to the Fail case, then we’ve
checked that every character is equal, and we should enter the Pass case.

Remember that strings end with a null terminator, so if either loaded character is 0 (null byte),
then we know that we reached the end of both strings. Note that Line 11 will check for us that
both strings have reached the null terminator, since it checks that every character is equal. This is
why the Pass branch must come after the Fail branch-if they were swapped, then this function
would jump to Pass whenever the shorter string terminates, even if the longer string still has extra
characters left.

Accepted solutions:
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« beq t2, x0, Passorbeq t2, zero, Pass
« beq t3, x0, Passorbeq t3, zero, Pass

« Partial credit: Using the address t0 instead of the value t2, and/or using the address t1
instead of the value t3 (e.g. beq t0, x0, Pass)

« Partial credit: Swapping lines 11 and 12 (only applies if both lines 11 and 12 are fully correct)

« Partial credit: NULL or \0 or 0x00 instead of x0 or zero (incorrect syntax for a null byte in
RISC-V)

Lines 13-14: Once we finish checking a pair of characters, we need to increment the addresses
to the next character. The next time the loop runs, the load instructions will now load the next
character in the string.

Recall that characters are 1 byte, and RISC-V indexes memory by bytes, so we should increment
the addresses in t0 and t1 by 1.

Accepted solutions: 1

Line 15: If we didn’t jump to the Fail or Pass case, after we increment the addresses, we need to
keep executing the loop and check the next character. To do this, we should jump back to the start
of the loop. This is not a function call, and we don’t care about saving our return value, so a simple
jump instruction is sufficient.

There is an alternate solution here that combines Line 12 (pass check) and Line 15 (jumping to
loop). As in the standard Line 12, we check if t2 (or t3, which must be equal at this point) is equal
to 0 (the null byte). If so, we’ve reached the end of the string, so we should continue execution
normally to the Pass case immediately following the loop. If not, then we need to loop again, so
we jump back to the start of the loop. This logic is captured in bne t2, x0, Loop. With this
alternate solution, Line 12 can be blank (or any innocuous instruction that doesn’t affect program
execution, e.g. add t6, x0, x0).

Accepted solutions:
« j Loop
« jal x0 Loop

+ jal Loop (this is not the best answer because it unnecessarily saves a useless return address
into ra, but it won’t break the program because the saved value of ra is restored in the
function epilogue)

« Partial credit: jr Loop or jalr Loop (incorrect jump instructions, because these jump to
addresses in registers, not a label)

« bne t2, x0, Looporbne t3, x0, Loop (see alternate solution above)
Line 17: If the check passes, we should load 1 into the return value register a0.

One way to reason this out: This line of code only executes if we jump to the Pass label. The only
line of code that is unique to the case where the check passes is putting 1 in the return value
register, indicating success. Other cleanup lines of code (e.g. function epilogue, return instruction)
are common to both the Pass and Fail cases, so they are more suited to be in the End label.
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Accepted solutions:
 Any instruction that puts the value 1 in a0, including: 11 a0, 1oraddi a0, x0, 1

Line 18: If the check passes, we don’t want to execute the code under the Fail case, so we should
jump to the End label. Like in Line 15, this is not a function call, and we don’t care about saving
our return value, so a simple jump instruction is sufficient.

Accepted solutions:
« j End
« jal x0 End

« jal End (this is not the best answer because it unnecessarily saves a useless return address
into ra, but it won’t break the program because the saved value of ra is restored in the
function epilogue)

o Partial credit: jr End or jalr End (incorrect jump instructions, because these jump to
addresses in registers, not a label)

Line 20: If the check fails, we should load 0 into the return value register a0. The reasoning from
Line 17 also applies to solving this blank.

Accepted solutions:

« Any instruction that puts the value 0 in a0, including: 1i a0, 0oraddi a0, x0, 0ormv
a0, x0oradd a0, x0, x0

Line 22: At the end of the function, we need to undo any setup we did at the beginning of the
function. In particular, we should write a function epilogue to restore all the saved register values
on the stack.

Since we stored the original value of ra 20 bytes above the stack pointer in the prologue, we should
load from that same location in memory to restore ra.

Accepted solutions:
« lw ra, 20(sp)
« Partial credit: 1w ra, 24(sp) (off-by-one)

Line 23: As part of the function epilogue, we should also increment the stack pointer back up to
delete the space we allocated earlier in the function.

In Line 2, we decremented the stack pointer by 24, so we should now increment the stack pointer
by 24.

Accepted solutions:

o addi sp, sp, 24

« Partial credit: Swapping lines 22 and 23 (only applies if both lines 22 and 23 are fully correct)
Line 24: Finally, we need to return from the function.

Accepted solutions:
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. ret
e jr ra
e jalr x0, ra, x0

Grading: Each blank was graded independently, except for cases where a correct answer was
placed one line before or after its intended location. Full points for any accepted solution. Half
points for any partial credit solution listed. No credit for any of the common mistakes listed.

These lines were worth 0.5 points: 3, 5, 6, 9, 10, 13, 14, 17, 20, 24

These lines were worth 1 point: 4, 11, 12, 15, 18, 22, 23

Q5.2 (4 points) Translate addi sp, sp, -24 to its machine-language hexadecimal representation,
with the appropriate prefix.

Solution: 0xFE810113
Start with the opcode: addi has opcode 0010011, so we now have:
————————————————————————— 0010011

We know that this is an I-type instruction now, so we can follow that format on the green card.
We can fill in the funct3 for addi, which is 000:

----------------- 000-----0010011
Next, we can fill in both registers rd and rs1, since they are both sp = x2 = 00010:
———————————— 00010000000100010011

Finally, we can fill in the immediate, which is -24. To write this in two’s complement binary,
start by writing 24 in unsigned binary: 0b00011000. Then flip the bits: 0b11100111, and add
one: 0b11101000. Finally, sign-extend this value to 12 bits: 0b111111101000.

11111110100000010000000100010011
Converting this to hexadecimal gives us 0xFE810113.

Grading: 4 points for a completely correct answer. If the answer was not fully correct, we
gave partial credit as follows:

« 1 point for the correct opcode (hex instruction looks like XXXXXX13 or XXXXXX93) and
func3 (hex instruction looks like XXXX0XXX or XXXX8XXX)

1 point for the correct registers (hex instruction looks like XXX1K1KX, where K < 8)

2 points for the correct immediate (hex instruction starts with 0XxFE8)

1 point for an immediate of 24 (hex instruction starts with 0x018)

« 2 points for the correct answer in binary
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Q5.3 (4 points) Assume that verifypassword islocated at 0x00001000, and Get20chars is located at
0x00000£00, and that line 4 is exactly one instruction (not a pseudoinstruction). Translate the line
jal ra Get20chars to its machine-language hexadecimal representation, with the appropriate
prefix.

Solution: 0XEF5FFOEF
Start with the opcode: jal has opcode 1101111, so we now have:
————————————————————————— 1101111

We know that this is an I-type instruction now, so we can follow that format on the green card. We
can fill in the register rd, whichisra = x1 = 00001:

-------------------- 000011101111

Next, we need to calculate the immediate. Remember that addresses are PC-relative, so we need to
calculate the distance in memory between the current instruction and the Get20chars function.

According to the assumption, verifypassword starts at 0x00001000, and Get20chars starts at
0x00000£00. The distance between these two functions is 0x00001000 - 0x00000£00 = 0x100
= 256 bytes. In other words, from the beginning of verifypassword, we have to jump 256 bytes
backwards to reach the Get20chars function.

However, we aren’t starting exactly at the beginning of the verifypassword function. Labels aren’t
stored in memory, so Line 2 is the first instruction in the function. The jal instruction at Line 5 is
3 instructions = 12 bytes after Line 2 (using the assumption that Line 4 is not a pseudoinstruction).
Thus we actually have to jump another 12 bytes backwards to reach the start of the function, then
another 256 bytes backwards to reach Get20chars, for a total of 256+12=268 bytes backwards.

Now that we have our immediate of -268 (negative because we are jumping to a lower address in
memory), we can convert it to two’s complement binary. Start by writing 268 in unsigned binary:
0b000100001100. Then flip the bits: 0b111011110011, and add one: 0b111011110100. Finally,
sign-extend this value to 21 bits: 0b111111111111011110100.

Now we have to rearrange this number to fit in the instruction format. Start with the 20th bit
(zero-indexed) 0b111111111111011110100:

l- - - 000011101111

Then encode bits 10 through 1 0b111111111111011110100:

11101111010--------~ 000011101111

Then encode bit 11 0b111111111111011110100:

111011110101-------- 000011101111

Then encode bits 19 through 12 0b111111111111011110100:
11101111010111111111000011101111

Note that the 0th bit was never encoded in the instruction, because it is guaranteed to always be 0.

Converting this to hexadecimal gives us OXEF5FFOEF.
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Grading: 4 points for a completely correct answer. If the answer was not fully correct, we gave
partial credit as follows:

« 0.5 points for the correct opcode (hex instruction ends in EF or 6F)
« 0.5 points for the correct register (hex instruction looks like XXXXXO0KX, where K > 8)
« 3 points for an immediate of -268 (hex instruction starts with EF5FF)
If the immediate was not correct, we gave partial credit for that rubric item as follows:
« 1.5 points for an immediate of 268 (hex instruction starts with 10C00)
« 1.5 points for not ignoring the 0th bit (hex instruction starts with DE9FF)
« 1.5 points for an immediate of -272 (hex instruction starts with EF 1FF)
« 1.5 points for an immediate of -244 (hex instruction starts with FODFF)

« 1.5 points for an immediate of -12 (hex instruction starts with FF5FF)
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Q6  Testception (20 points)
Recall the following information from the previous question:

You have access to the following labels defined externally:
» Password: a pointer to a statically-stored string "secretpass”
+ Get20chars: A function defined as follows:
— Input: a0 is a pointer to a buffer

— Effect: Reads characters from stdin, and fills the buffer pointed to by a0 with the read data,
null-terminating the string. Your code may assume that the input is at most 19 characters,
not including the null-terminator.

— Output: None
The function verifypassword is defined as follows:
« Input: No register input; however, the function receives a string input from stdin.
« Output: a0 returns 1 if the input from stdin is exactly “secretpass”, and 0 otherwise.

Propose a suite of 4-6 tests you would use to verify that an implementation of this function works
properly. Your test suite does not need to be comprehensive, but each test should test something different.
We will only count your best 4 tests when grading.

Each test should consist of a list of inputs, expected outputs, and a one-sentence justification for why
this test is useful. A useful test without proper justification will not receive credit.

Some cases you can test include:
+ A generic case that returns true

« A generic case that returns false

Other calling convention checks
» Edge cases

rand0 through rand11 is a constant set of 12 randomly generated numbers, which you can use in your
tests.

A valid example is provided below; you may not reuse the example.

Test 0

Input(s) a0-a7 = randO-rand7
stdin = "secretpass"
Output(s) a0 =1

Justification | Check for using unset a registers.
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Test 1

Input(s)

Output(s)

Justification

Test 2

Input(s)

Output(s)

Justification

Test 3

Input(s)

Output(s)

Justification
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Test 4

Input(s)

Output(s)

Justification

Test 5

Input(s)

Output(s)

Justification

Test 6

Input(s)

Output(s)

Justification
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Solution:

Grading: Each test was graded independently. In order to qualify for points, a test needed to have
a valid purpose, a reasonable justification, no errors, and not be redundant with another test. Each
correct test was awarded 5 points. No partial credit was given on individual tests, in part because
only 4 out of 6 tests needed to be correct.

A list of common valid tests were as follows.
Generic tests:
+ One generic true test (ex. Input: stdin = "secretpass", Output: a0 = 1)
« One generic false test (ex. Input: stdin = "youshallnotpass", Output: Output: a0 = 1)
Calling convention tests:
+ A test on t register calling conventions (ex. Input: t0-t6 = rand0-rand6,
stdin = "secretpass", Output: a0 = 1)
« A test on s register calling conventions (ex. Input: s0-s11 = rand0-rand1l,
Output: s0-sll=rand0-randl11l)
« A test to confirm that the sp was restored (ex. Input: sO = sp, Output: sp=s0)

+ A test to confirm that data on the stack is unchanged (ex. Input: sp -=4, sw rand0 0(sp),
Output: 0(sp) = rand0)

Note that any calling convention test could be listed twice; once for a true case, and once for a false
case (since a solution could feasibly forget calling convention on only one branch).

Edge case tests:
« Empty string (ex. Input: stdin="")
« Password stays constant after the function call (ex. Output: Password="secretpass")
+ A string of length 19 or more doesn’t overwrite needed stack data
(ex. Input: stdin="nineteen characters")
« "secretpass" is a strict prefix of the input (ex. Input: stdin="secretpassword")
« The input is a strict prefix of "secretpass” (ex. Input: stdin="secret")
« Edge Case: The input differs only on the first character (ex. Input: stdin="mecretpass")
« The input is the same length as "secretpass” (ex. Input: stdin="passsecret")
+ The input has punctuation or numbers (ex. Input: stdin="1213$")
+ The input is capitalized (ex. Input: stdin="SeCreTPass")
A list of common tests which weren’t considered valid were as follows:

« S-register or stack tests without explicitly checking values in the output
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+ Setting the sp to a random location. A correct solution may use the stack, and setting the sp
to a random location is a good way of overwriting somewhere randomly (or segfaulting).

« Setting the ra to a random location. jal sets the ra to the line after the function call anyway.

+ Any test involving checking for restoring t or a registers, or the ra. This is not mandated by
calling convention.

+ A test on a register calling conventions. This was already provided as an example, and thus
could not be used unless justification explicitly put it under a test of a registers in the false
case.

« Tests which attempted to modify Password or send input via a0. The specification of this
question was that verifypassword return true when the input was "secretpass”, not when it
matched the string stored in Password or in a0.

« Tests which attempted to access a register that did not exist. In particular, any test which
attempted to set the nonexistent register t7 was automatically incorrect.

« Tests which relied on the specific implementation of verifypassword used in question 5 (such
as checking t3 or t4 for specific values).

« Tests which attempted to put string data after a null terminator, or which tried to send a
string without a null terminator. C strings are by definition ended at the null terminator, and
stdin generally doesn’t automatically add a terminator to the end of its data anyway, so these
tests are redundant with any other tests written.

« Tests which tried to check that input differentiated the null terminator from the ASCII
character "0"; the null terminator is a character in its own right with ASCII value 0, and is
written as \x2F\x30 only for reading convenience. The two are entirely different, so such a
justification doesn’t really work.

+ Any test where the expected output was Error. This question didn’t specify any case in which
a correct solution would error, so no input should expect to cause an error.

« Any other test which didn’t adhere to spec, could return a failure on a correct solution, or
had no justification.
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